DATE DE PUBLICATION: 06/19

VERSION: 1

FRITTAGE I ASER DIRECT DE MÉTAL

ALUMINIUM ALSI10MG


SPÉCIFICATIONS DU PRODUIT

DESCRIPTION DU PRODUIT:

L'aluminium AlSi10Mg est un alliage de fonderie typique. Il présente de bonnes propriétés pour le moulage. Il permet notamment de produire des pièces moulées aux parois fines et à la géométrie complexe. Sa robustesse, sa dureté et ses propriétés dynamiques le rendent également parfaitement adapté à la production de pièces soumises à de fortes charges. Les pièces en aluminium AlSi10Mg sont idéales pour les utilisations nécessitant à la fois de bonnes propriétés thermiques et un faible poids. Elles peuvent être façonnées par usinage, étincelage, soudage, grenaillage d'écrouissage, polissage et enduction, selon les besoins.

APPLICATIONS:

L'aluminium AlSi10Mg est parfaitement adapté aux pièces légères nécessitant de bonnes propriétés thermiques. Il peut aussi se substituer aux pièces moulées.

AVANTAGES DU PRODUIT

- Excellentes propriétés thermiques
- Légèreté
- Grande résistance

COMPOSITION CHIMIQUE:

Normes EN-AC-AlSi10Mg(Cu)

Al (balance)

Si (9.0 - 11.0 wt-%)

Fe ($\leq 0.55 \text{ wt-1}\lb$)

Cu (\leq 0.05 wt-I\(,))

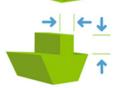
 $Mn (\le 0.45 \text{ wt-}\%)$

Mg (0.2 - 0.45 wt-%)

Ni (\leq 0.05 wt-%)

 $Zn (\le 0.10 \text{ wt-}\%)$

Pb ($\leq 0.05 \text{ wt-}\%$)


 $Sn (\le 0.05 \text{ wt-}\%)$

Ti (\leq 0.15 wt-%)

CRITÈRES GÉOMÉTRIQUES REQUIS:

Épaisseur de paroi minimale : 1 mm Largeur minimale de détail : 1 mm

Détails gaufrés, minimum : hauteur et largeur 0,5 mm, 0,8 mm pour texte lisible et images bien définies

Détails gravés, minimum : profondeur 0,5 mm, largeur 0,6 mm ; largeur 1 mm pour texte lisible et image bien définies

PROPRIÉTÉS:

Traitement thermique	Résistance à la traction MPa	Limite élastique 0,2% MPa	Allongement %	Dureté	Densité
1	360 MPa +/- 30 MPa	240 MPa +/- +/- 30 MPa	6 +/- 5%	120 +/- 5 HBW	>99,8%
Traitement thermique	Résistance à la traction MPa	Limite élastique 0,2% MPa	Allongement %	Dureté	Densité
Traité thermiquement	>267 MPa	>200 MPa	10 +/- 2%	-	>99,8%
	Sorti d'impression		Traité thermiquement		
Conductivité thermique	approx. 100 +/- 5 W/m°C		approx. 170 +/- 5 W/m°C		
Chaleur spécifique	approx. 900 +/- 50 J/kg°C		approx. 890 +/- 50 J/kg°C		

RÉSOLUTION:

	Epaisseur de couche	Enveloppe construction	Dimension minimale de détail
Haute Résolution	0,03 mm	250x250x300mm	1,00mm
Résolution normale	0,06 mm	300x300x400mm	1,00mm

SURFACE:

	0°	45 ° base	45 ° sommet	90 °
Haute Résolution	Ra 6,3 μm	Ra 8,2 μm	Ra 9,9 μm	Ra 6,6 μm
	Rz 30,7 μm	Rz 36 μm	Rz 45,5 μm	Rz 32 μm
Résolution normale	Ra 6,3 μm	Ra 15 µm	Ra 4 µm	Ra 3,5 μm
	Rz 30,7 μm	Rz 60 µm	Rz 20 µm	Rz 18 μm

Haute Résolution 30 µm

Résolution normale 60 µm

TOLÉRANCES STANDARD:

Pour des pièces bien conçues, avec une direction de construction nominale, des tolérances de +/- 0,1 mm à +/- 0,2 mm + 0,005 mm/mm sont généralement prévues et vérifiées.

Certaines structures géométriques sont susceptibles de provoquer des distorsions en raison de contraintes internes, ce qui peut entraîner des déviations supérieures.